ECED 3300 Tutorial 10

 Problem 1

 Problem 1}

A magnetic flux density is given by $\mathbf{B}=\mathbf{a}_{y} B_{0} / x \mathrm{~Wb} / \mathrm{m}^{2}$, where B_{0} is a constant. A rigid rectangular loop is situated in the $x z$-plane with the corners at the points $\left(x_{0}, z_{0}\right),\left(x_{0}, z_{0}+b\right)$, $\left(x_{0}+a, z_{0}+b\right),\left(x_{0}+a, z_{0}\right)$. If the loop is moving with the velocity $\mathbf{v}=v_{0} \mathbf{a}_{x}$, determine the induced emf.

Solution

At the time t the corners of the loop will be at the points $\left(x_{0}+v t, z_{0}\right),\left(x_{0}+v t, z_{0}+b\right),\left(x_{0}+a+\right.$ $\left.v t, z_{0}+b\right),\left(x_{0}+a+v t, z_{0}\right)$. Using the Faraday's law, $\mathcal{E}_{\text {emf }}=\oint_{C} d \mathbf{l} \cdot \mathbf{E}=-\frac{d}{d t} \int_{S} d \mathbf{S} \cdot \mathbf{B}$. In our case, $d \mathbf{S}=d x d z \mathbf{a}_{y}$ implying that

$$
\int_{S} d \mathbf{S} \cdot \mathbf{B}=B_{0} \int_{z_{0}}^{z_{0}+b} d z \int_{x_{0}+v t}^{x_{0}+a+v t} \frac{d x}{x}=B_{0} b \ln \frac{x_{0}+a+v t}{x_{0}+v t} .
$$

It then follows that

$$
\mathcal{E}_{\mathrm{e} f m}=B_{0} b v\left(\frac{1}{x_{0}+v t}-\frac{1}{x_{0}+a+v t}\right) .
$$

Problem 2

Solve the previous problem for a stationary loop in the time-varying magnetic field $\mathbf{B}=$ $\mathbf{a}_{y}\left(B_{0} / x\right) \cos \omega t W b / m^{2}$.

Solution

If the loop is at rest, by analogy with the previous example,

$$
\begin{align*}
\mathcal{E}_{\mathrm{e} m f}= & -\frac{d}{d t} \int_{S} d \mathbf{S} \cdot \mathbf{B}=\omega B_{0} \sin \omega t \int_{z_{0}}^{z_{0}+b} d z \int_{x_{0}}^{x_{0}+a} \frac{d x}{x} \\
& =\omega b B_{0} \sin \omega t \ln \frac{x_{0}+a}{x_{0}} \tag{1}
\end{align*}
$$

Thus,

$$
\mathcal{E}_{\mathrm{e} m f}=\omega b B_{0} \sin \omega t \ln \frac{x_{0}+a}{x_{0}} .
$$

Problem 3

Assume that the loop in Problem 1 moves with the velocity $\mathbf{v}=v_{0} \mathbf{a}_{x}$ in the time-varying field $\mathbf{B}=\mathbf{a}_{y}\left(B_{0} / x\right) \cos \omega t \mathrm{~Wb} / \mathrm{m}^{2}$, find the induced emf.

Solution

In this case, the loop moves and the magnetic flux density changes with time such that

$$
\begin{align*}
\mathcal{E}_{\mathrm{e} m f}= & -B_{0} \frac{d}{d t} \cos \omega t \int_{z_{0}}^{z_{0}+b} d z \int_{x_{0}+v t}^{x_{0}+a+v t} \frac{d x}{x} \\
& =-B_{0} b \frac{d}{d t}\left(\cos \omega t \ln \frac{x_{0}+a+v t}{x_{0}+v t}\right) . \tag{2}
\end{align*}
$$

Doing the derivative, we obtain

$$
\begin{align*}
\mathcal{E}_{\mathrm{e} m f}= & B_{0} b\left[\omega \sin \omega t \ln \frac{x_{0}+a+v t}{x_{0}+v t}+v \cos \omega t\right. \\
& \left.\times\left(\frac{1}{x_{0}+v t}-\frac{1}{x_{0}+a+v t}\right)\right] . \tag{3}
\end{align*}
$$

Problem 4

A rod of length l rotates about the z-axis with the angular velocity ω. If $\mathbf{B}=B_{0} \mathbf{a}_{z}$, determine the voltage induced in the rod.

Solution

Assume the rod was located along the x-axis at $t=0$. It follows that at the time t, it makes the angle $\phi=\omega t$ with the x-axis. We apply Faraday's law in the integral form to the sector formed with the x-axis and the position of the rod at the time t.

$$
\mathcal{E}_{\mathrm{emf}}=-\frac{d}{d t} \int d \mathbf{S} \cdot \mathbf{B}=-\frac{d}{d t} B_{0} \int_{0}^{\omega t} d \phi \int_{0}^{l} d \rho \rho\left(\mathbf{a}_{z} \cdot \mathbf{a}_{z}\right)=-\frac{1}{2} B_{0} l^{2} \frac{d}{d t} \omega t=-\frac{1}{2} B_{0} l^{2} \omega .
$$

Thus,

$$
V=\mathcal{E}_{\mathrm{emf}}=\frac{1}{2} B_{0} \omega l^{2} .
$$

